Tandem encoder GEL 290 Redundant rotary encoder system

Version 2014-07

General

The tandem encoder GEL 290 was specially developed for applications with high requirements on redundancy. Several independently operating encoders are mounted on the drive shaft as one unit. The length of the encoder system is reduced to a minimum by design measures. The tandem encoder is made up for each specific application.

The measuring scale on the rotary encoder used is of robust design so that it can even withstand extreme impacts and vibration. The magnetic sensors are resistant to harsh environmental conditions such as dirt, oil, humidity or condensation due to temperature differences. The rotary encoder contains bearings that ensure maintenance-free, durable operation in the harshest operating conditions.

Features

- Modular design
- Max. 3 systems
- Combination of incremental rotary encoder and absolute rotary encoder
- Resolution
- Incremental rotary encoder 266240 increments per turn
- Absolute rotary encoder 65536 steps per turn
- Protection class (overall system) IP66

Advantages

- Solution individually tailored to the specific application
- Various signals redundant due to flexible design
- Maintenance-free, durable operation in harshest ambient conditions due to selected bearing and measuring systems

Field of application

- General mechanical engineering
- Process automation
- Wind power / regenerative energies

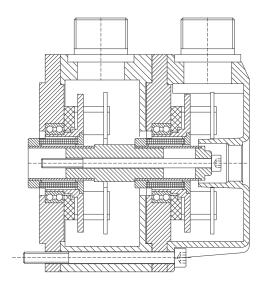
Description

Concept

The concept of the tandem encoder foresees the mounting of several independently operating encoders on one shaft. For this purpose, the encoders have been equipped with a continuous shaft or hollow shaft. In this way the requirements from process automation and process data acquisition for checking and safeguarding processes at the same time can be realised. The length of the encoder system has been kept as short as possible to permit trouble-free usage in practice.

Modular design

The tandem solution allows assembly of different encoders in a relatively short set.


A central element of the tandem encoder is the incremental rotary encoder GEL 292, this device must be included at least once in each tandem system. The incremental rotary encoders are equipped with a flexibly mounted hollow shaft into which coupling elements with an accurate fit are inserted; in this way space is saved on fitting together the encoders.

The terminating element on a tandem encoder can be an incremental encoder with hollow shaft GEL 293 or an absolute rotary encoder with synchro-flange GEL 235. The incremental rotary encoders GEL 292 and GEL 293 are technically identical and vary only in the housing de-

sign. Various components such as flanges, couplings, bearing

System combinations

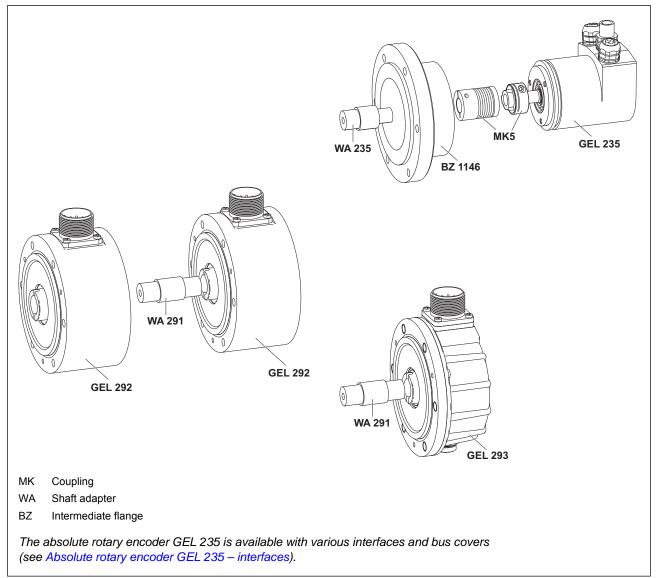
pedestal with heavy-duty shaft etc. are available for mounting the system (see Mounting accessories).

Sectional view of a tandem encoder with basic module GEL 292 and incremental rotary encoder GEL 293

Ordering information

The type codes for the combined encoders must be stated on ordering the tandem (see Type code).

Possible combinations with 2 systems	System 1 basic module	System 2
Incremental rotary encoder GEL 292	•	-
Incremental rotary encoder GEL 293 with shaft adapter	-	0
Absolute rotary encoder GEL 235 with shaft adapter, intermediate flange and coupling	_	0


Possible combinations with 3 systems	System 1 basic module	System 2	System 3
Incremental rotary encoder GEL 292	•	•	-
Incremental rotary encoder GEL 293 with shaft adapter	-	-	0
Absolute rotary encoder GEL 235 with shaft adapter, intermediate flange and coupling	_	_	0

required

optional

not possible

Component overview

Technical data

Technical data – incremental rotary encoder GEL 292 / 293

	T, TN	U, UN	S, SN	V, VN	X, XN
General	-				
Measuring range		40) to 266240 step	os	
Accuracy			0.005°		
Electrical data					
Supply voltage V _S	5 V DC ± 5%	5 V DC ± 5% 10 to 30 V DC			
Power consumption		≤ 1	.3 W, without lo	ad	
Logik level	Т	TL		HTL	
Output level high	\geq V _S - 1.00 V at I = 10 mA; \geq V _S - 1.20 V at I = 30 mA	at I = 10 mA;	≥ V _S - 1.80 V at I = 10 mA; ≥ V _S - 2.20 V at I = 30 mA		
Output level low	≤ 0.75 V at ≤ 1.00 V at	,		.15 V at I = 10 .55 V at I = 30	,
Mechanical data					
Moment of inertia of rotor		8 · 10 ⁻⁵ kgm ²			
Max. operating speed (r.p.m.)	8,000 min ⁻¹				
Weight	0.7 kg per system				
Admissible coupling offset axial radial	±1 mm ±0.5 mm				
Bearing life cycle at axial load	> 15.000 · 10 ⁶ revolutions				
Housing	stainless steel, X12CrMoS17-1,4104				
Ambient data					
Working temperature range		-	20 °C to +85 °C	;	
Operating temperature range		-	20 °C to +85 °C)	
Storage temperature range		-40 °C to +105 °C			
Protection class (EN 60529)	IP 66				
Vibration protection (DIN EN 60068-2-6)		100 m/s ² , 10 to 2000 Hz			
Shock protection (DIN EN 60068-2-27)	1000 m/s ² , 11 ms				
EMC	EN 61000-6-1 to 4				
Insulation strength (DIN EN 60439-1)	Ri > 1 MΩ at 500 V AC				

Output signals

Signal pattern V, VN

The "V" signal pattern refers to two tracks with squarewave signals offset by 90°. On the third track N a reference signal of defined length is output once per turn.

	V _S	V _{out}
V, VN	10 to 30 V DC	HTL

Signal pattern T, TN, U, UN, X, XN

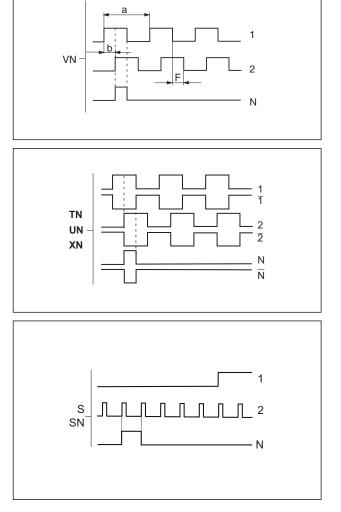
The two pulse outputs and the reference signal are output as inverse signals.

	V _S	V _{out}
T, TN	+ 5 V DC ± 5 %	TTL
U, UN	10 to 30 V DC	TTL
X, XN	10 to 30 V DC HTL	

Signal pattern S, SN

Pulses independent of the direction of rotation and of constant duration are derived from the square-wave signals as per signal pattern V and output on the 2nd track. In addition, a signal dependent on the direction of rotation is obtained from the signal pattern (counting direction); it is output on the 1st track. On the third track N (option) a reference signal is output once per turn. The pulses follow a possible change in the direction of rotation with a short delay so that any downstream counting circuit can be set to the counting direction prior to the pulse. The signal dependent on the direction of rotation can be inverted using a switch accessible from the exterior (switch 1).

	V _S	V _{out}
S, SN	10 to 30 V DC	HTL


Key

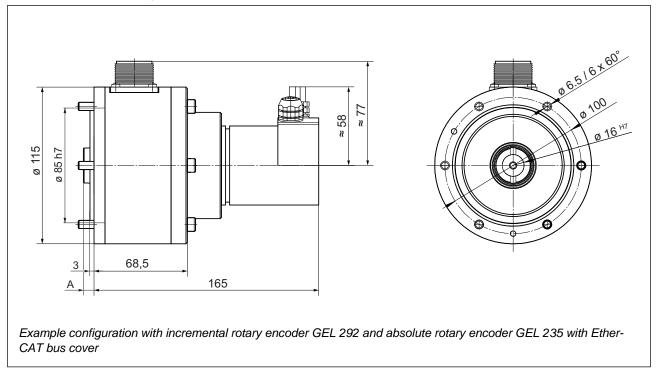
- V_S Supply voltage
- V_{out} Signal voltage
- a 360° electrical
- b 90° phase offset
- F Time between edges⁽¹⁾

Output level

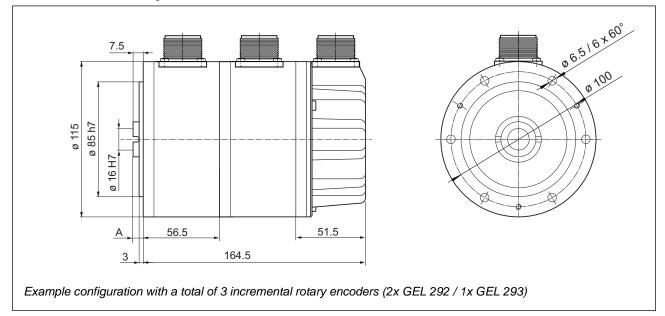
The signal patterns S, SN, V, VN, X and XN have HTL levels, the signal patterns T, TN, U and UN have TTL levels (for output voltage see technical data).

All outputs have a push-pull power amplifier and have sustained short circuit-protection. The peak output current for discharging the cable capacitance is 100 mA.

 $^{^{(1)}\,}$ At an output frequency of 200 kHz the time between the edges is F > 0.6 μs


Technical data

Technical data – absolute rotary encoder GEL 235


General	
Incremental deviation	< 0.01°
Accurary	± 0.08°
Electrical data	
Operating voltage	10 to 30 V DC with reverse voltage protection (option: 5 V - 5%, +25%)
Power consumption	< 1.6 W, without load
Resolution Singleturn (ST)	8, 9, 10 to 16 Bit (measuring steps over 360°)
Resolution Multiturn (MT)	4, 8, 12 Bit (revolution, mechanical gear)
Interface	SSI, PROFIBUS Encoder Profile V 1.1, EtherCAT (CoE), CANopen Encoder Profile DS406, analogue 4 to 20 mA
Analogue output signal	Sin/Cos difference signal 1 V _{PP} , 64 periods per resolution
Mechanical data	
Moment of inertia of rotor	611.8 [.] 10 ⁻⁶ kgm ²
Material	anodised aluminium
Weight Singleturn	300 g
Weight Multiturn	310 g
Operating speed (limit value) Singleturn	12,000 min ⁻¹
Operating speed (limit value) Multiturn	10,000 min ⁻¹ , 12,000 min ⁻¹ (short-term)
Operating torque	< 3 Ncm
Bearing life cycle	> 10 ⁵ at 1000 min ⁻¹
Shaft sealing ring	Material: Viton, protection class: IP 67, reduced operating speed: max. 6,000 min ⁻¹
Ambient data	
Working temperature range	-40 °C to +85 °C
Operating temperature range	-40 °C to +105 °C
Storage temperature range	-40 °C to +85 °C
Protection class (acc. to DIN 60529)	IP 67
Vibration protection (DIN EN 60068-2-6)	200 m/s ² , 10 to 2,000 Hz
Shock protection (DIN EN 60068-2-27)	2000 m/s ² , 11 ms
EMC	EN 61000-6-1 to -4
Insulation strength	Ri > 1 MΩ at 500 V AC
Relative humidity of air max.	99 %
Condensation	permissible, according to DIN EN 60068-2-30 Part 2 of 1999
Synchro flange	
Shaft load (radial/axial)	at 1,000 min ⁻¹ = 70 N / 50 N, at 6,000 min ⁻¹ = 50 N / 40 N

Dimensional drawings

Tandem encoder with 2 systems

Tandem encoder with 3 systems

Dimension A⁽¹⁾

Max. axial shaft motion [mm]	Min. dimension A [mm]
1	7.5
2	8.5
3	9.5

⁽¹⁾ Dimension A includes the minimum pre-load on the coupling of 1.5 mm with an axial shaft motion of 1 mm.

Absolute rotary encoder GEL 235 – interfaces

Synchronous serial interface

Direction of rotation

The encoder can output increasing position values on the clockwise or counter clockwise rotation of the shaft. The direction of rotation can be selected by using the CW/CCW input (counting direction).

Position values on the clockwise rotation of the shaft

Reducing pos. ↓

Standard: GND on CW/CCW or not connected: Increasing pos. ↑

Inverse: V_S on CW/CCW:

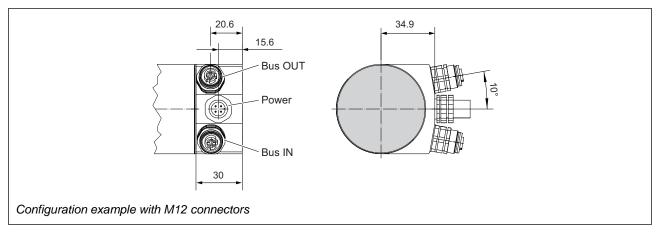
Cable length

With the synchronous serial interface protocol the transmission rate allowed drops with increasing cable length. A screened, twisted pair cable is recommended for the signal cables (\pm CLOCK and \pm DATA).

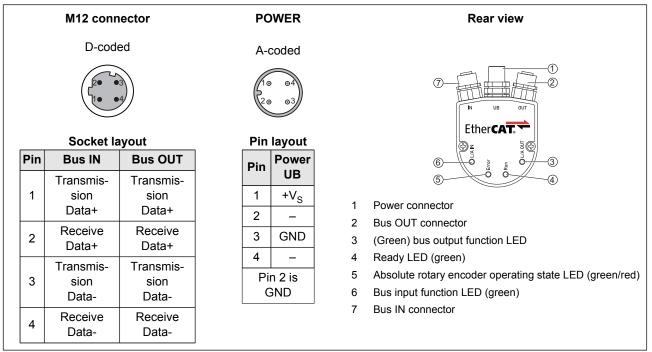
Cable length [m]	< 50	< 100	< 200	< 400
Clock frequency [kHz]	< 400	< 300	< 200	< 100

PRESET function

The output signals can be set to a PRESET value from any position. As supplied the encoder is set to half the maximum resolution. The PRESET is set electronically if the supply voltage V_S is briefly t > 100 ms applied to the PRESET input (do NOT apply continuously). As an alternative there is a PRESET push-button recessed into the base of the housing (IP 67). The PRESET push-button can be operated using a pin (t > 100 ms). Other PRESET values are available on request.


Connection assignment

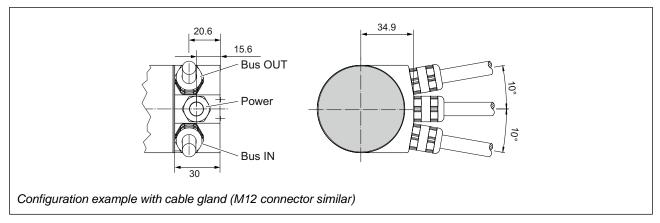
Pi	n	Signal	Description
	1	GND	Earth
	2	DATA+	Output: Differential data signal in accordance with RS 485
	3	CLOCK+	Input: Differential clock signal in accordance with RS 485
	4	SIN-	
	5	SIN+	Output: 64 periods / 360°
	fferential signal 1 V _{pp}		
	7	COS+	
4005	8	V _S	Supply voltage
	9	Preset	Set measuring range zero or centre
	10	DATA-	Output: Differential data signal in accordance with RS 485
	11	CLOCK-	Input: Differential clock signal in accordance with RS 485
	12	CW/CCW	Direction of rotation; default = GND; reversal= V _S
	Screen		


Technical data SSI

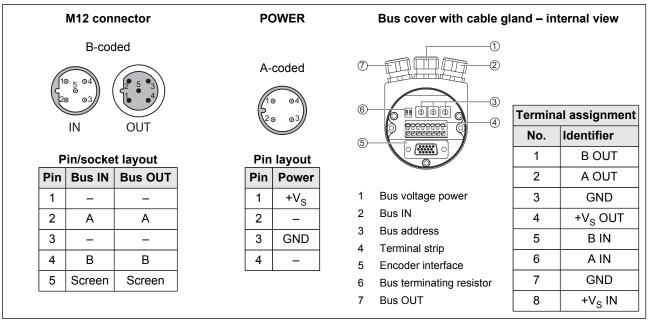
Output code	binary, gray
Clock frequency	max. 2 MHz
Transmission	Max. 1,200 m depending on transmission rate
The immunity to interference	high immunity to interference via symmetrical transmission
Direction of rotation	adjustable, standard clockwise (CW) with view on the en- coder shaft, increasing position values
Preset	about input level or optional with pushbutton

Bus cover for EtherCAT

Pin layout – EtherCAT

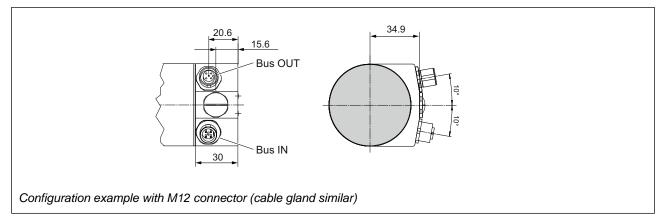


Technical data EtherCAT


Device profile	CoE (CANopen over EtherCAT) DS 406
Connection	Bus cover as T-coupler with D-coded M12 connectors and diagnostics LED
Programmable parameters	Scaling PRESET Speed and acceleration
Sensor ID	Automatic address assignment
Operating temperature	-40 to +85 °C

Absolute rotary encoder GEL 235 – interfaces

Bus cover for PROFIBUS-DP


Pin layout – PROFIBUS-DP

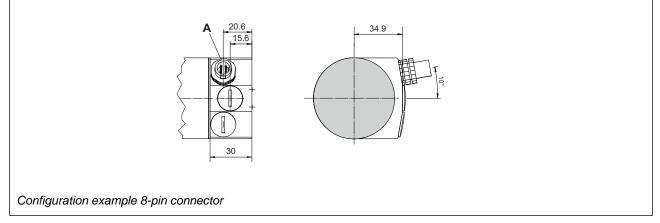
Technical data PROFIBUS-DP

Device profile	Encoder profile V 1.1
Cable diameter	8 mm
Connection	Bus cover as T-coupler either with cable gland or M12 connector, diagnostics LED, I/O electrically isolated (inductive coupling)
Programmable parameters	Resolution, PRESET, offset, counting direction, speed, ac- celeration and rotational speed output, scalable number of steps
Output code	Binary
Baud rate	9.6 kbit/s to 12 Mbit/s can be set via bus master
Sensor ID	Automatic address assignment
Terminating resistor	Switchable via bus cover (both DIP switches set to ON)
Operating temperature	-40 to +85 °C (shorttime 100 °C)

Bus cover for CANopen

Pin layout - CANopen

M12 connector		Setti	ngs	Bus cover with cable gland – internal view			ternal view	
A-coded								
$ \begin{pmatrix} 10 & 5 & 04 \\ 0 & 0 & 03 \end{pmatrix} \begin{pmatrix} 2 & 5 & 03 \\ 1 & 0 & 04 \end{pmatrix} $		Baud rate 1 Mbit/s	Position 9			Termin	al assignment	
C			800 kbit/s	8			No.	Identifier
	IN	OUT	500 kbit/s	7		5	1	CAN_H
Pin/socket layout		250 kbit/s	6			2	CAN_L	
Pin	Bus IN	Bus OUT	125 kbit/s	5	1	Bus IN	3	GND
1	Screen	Screen	100 kbit/s	4	2	Baud rate	4	+V _S OUT
2	+V _S IN	+V _S OUT	50 kbit/s	3	3	Bus address Terminal strip	5	CAN_H
3	GND	GND	—	2	5	Encoder interface	6	CAN_L
4	CAN_H	CAN_H	—	1	6	Bus terminating resistor	7	GND
5	CAN_L	CAN_L	Autobaud	0	7	Bus OUT	8	+V _S IN

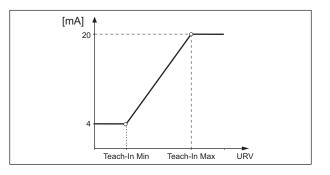

Technical data CANopen

Device profile	CANopen DS406 with additional function	
Cable diameter	8 mm	
Connection	Bus cover as T-coupler either with cable gland or M12 connector, diagnostics LED, I/O electrically isolated (induc- tive coupling)	
Programmable parameters Resolution, PRESET, offset, counting direction, speed celeration and rotational speed output, range output red to pre-defined values, scalable number of steps (mal/binary)		
Output code	Binary	
Baud rate	50 kbit/s to 1 Mbit/s can be set via bus master or rotary se- lection switch	
Sensor ID 0 99, can be set via rotary selection switch		
Terminating resistor	Switchable via bus cover (both DIP switches set to ON)	
Operating temperature	-40 to +85 °C (shorttime 100 °C)	

Absolute rotary encoder GEL 235 – interfaces

Connection cover for analogue interface

Analogue interface 4 ... 20 mA

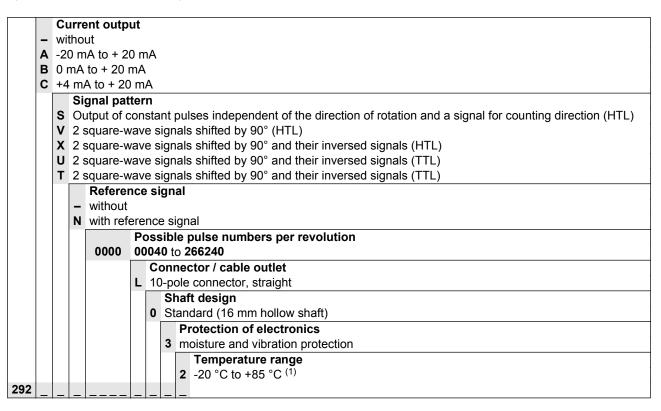

Direction of rotation

The encoder can output increasing current values on the clockwise or counter clockwise rotation of the shaft. The counting direction can be determined by using the CW/CCW input (see SSI interface \rightarrow page 8).

Teach-in function

The teach-in function is the commissioning function for the GEL 235 with analogue interface. Using this function the entire measuring range (EMR) can be defined between two freely configurable min. and max. points.

To define the signal, on reaching the teach-in min. and the teach-in max. position a supply voltage is applied to the related signal inputs for min. 100 ms. These positions are saved in non-volatile memory in the rotary encoder.


Pin	Signal	Note		
1	GND	Earth connection		
2	n. c.			
3	T-Low	Teach-in min.		
4	T-High	Teach-in max.		
5	AOUT	Analogue output (current)		
6	GNDA	Analogue earth		
7	V _S	Supply voltage		
8	CW/CCW	Direction of rotation (CW = GND (default); CCW = V_S)		
8-pin c	8-pin connector A-coded			

Pin layout - analogue interface

Technical data analogue interface

Internal resolution	65,536 steps per turn, 4,096 turns
Resolution of the interface	16 bits (0.244 $\mu A)$ in the range 4 to 20 mA
Measuring range	Max. 28 bits
Accuracy of the interface	15 μA typical (25 °C)

Type code - incremental rotary encoder GEL 292 / 293

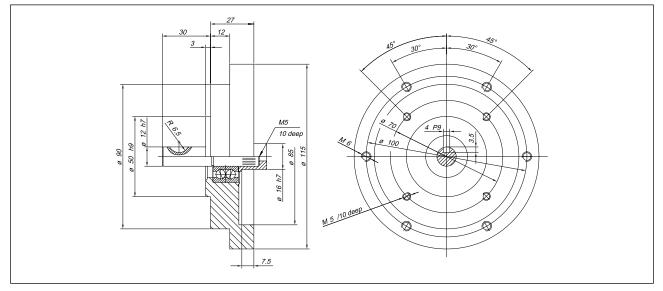
Mating connector GG106 is included in the scope of supply depending on the rotary encoder configuration.

⁽¹⁾ Extended temperature range possible on request.

Type code

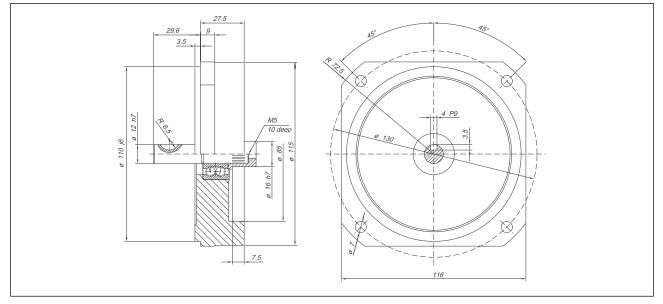
Type code – absolute rotary encoder GEL 235

	Inte	rface			
ΔΝ			e output		
			n DS 406		
	PROFIBUS DP				
	Ethe				
	SSI				
	SSI				
			, ry 5 V		
			y 5 V		
			solution per revolution		
	08		t, 256 steps/revolution		
			t, 512 steps/revolution		
			pit, 1024 steps/revolution		
			pit, 2048 steps/revolution		
			pit, 4096 steps/revolution		
			pit, 8192 steps/revolution		
			pit, 16384 steps/revolution		
			pit, 32768 steps/revolution		
			Bit, 65536 steps/revolution		
			Number of revolutions		
		00	Singleturn (ST)		
		04	04 bit, 16 revolutions		
		08	08 bit, 256 revolutions		
		12 12 bit, 4096 revolutions			
			Flange, Shaft		
			D Synchro flange, D = 10 / L = 20 mm		
			Electrical interface		
			D 12-pole connector outlet, Typ M 23, axial		
			E 12-pole connector outlet, Typ M 23, radial		
		K CANopen, bus cap with cable gland			
		L CANopen, bus cap with connector outlet			
		P PROFIBUS DP, bus cap with connector outlet			
		Q PROFIBUS DP, bus cap with cable gland			
			S Connection cap, 4 to 20 mA with M12-connector outlet		
			T EtherCAT, bus cap with M12-connector outlet		
			Connector/Cable		
			S Connector outlet / without cable		
			Protection class, Preset-pushbutton		
			4 Protection class IP 67, Preset-pushbutton		
			Option		
			0 None		
5					


Mounting accessories

List of accessories

Description	Item number
Two-part metal coupling, connection between the drive shaft or shaft adapter and encoder shaft	MK5 (BK 21601 + BK 21602)
Intermediate flange, for mounting GEL 292 and GEL 235	BZ 1146
Shaft adapter, for the intermediate flange ZW 150, mounting GEL 292 and GEL 292/293	WA 235 (BZ 1145)
Shaft adapter, for mounting GEL 292 and GEL 292/293	WA 291 (BZ 1118)
Bearing pedestal	LB 206.1 (BZ 1105)
Measuring block for position measurement using toothed belt	MB 292
Intermediate flange, for mounting a bearing pedestal or measuring pedestal	ZF 206 (BF 1301)
Shaft adapter, for the intermediate flange ZF 206	WA 206 (BZ 1115)
Mounting flange, round ⁽¹⁾	BF 292 (BF 1325)
Mounting flange, square ⁽¹⁾	BR 292 (BF 1310)
Measuring arm for mounting on the mounting flange BR 292, BF 292	MA 262 (BM 1402)
Measuring wheel with collet chuck SP 12, hard anodised, circumference 500 mm	MRM 500 (BM 1305 + MZ 1003 + MZ 1004)
Measuring wheel with collet chuck SP 12, rubberised, circumference 500 mm	MRG 500 (MZ 1012 + MZ 1003 + MZ 1004)
Special flange for mounting on devices from other manufacturers	Upon request


Special flanges can be supplied in various dimensions for different applications.

Dimensional drawing mounting flange BF 292

 $^{(1)}\,$ Mounting with measuring arm MA 262 and measuring wheel MRG 500/MRM 500 possible.

Accessories

Dimensional drawing mounting flange (square) BR 292

Connection accessories GEL 235

Description	Item number
CANopen connection cable 10 m, 5-pin plug / flying lead with ferrules	BK 2100
CANopen connection cable 2 m, 5-pin plug / flying lead with ferrules	BK 2101
CANopen connection cable 10 m, 5-pin socket / flying lead with ferrules	BK 2102
CANopen connection cable 2 m, 5-pin socket / flying lead with ferrules	BK 2103
CANopen connecting cable 10 m, 5-pin socket/plug	BK 2104
CANopen connecting cable 2 m, 5-pin socket/plug	BK 2105
PROFIBUS-DP, mating connector 5-pin socket, B-coded	FS 3016
PROFIBUS-DP, mating connector 5-pin plug, B-coded	FS 3017
PROFIBUS-DP Bus power connection cable 2 m, 4-pin plug A-coded / flying lead with ferrules	FS 3018
PROFIBUS-DP Bus power connection cable 10 m, 4-pin plug A-coded / flying lead with ferrules	FS 3019
CANopen, mating connector 5-pin socket, A-coded	FS 3020
CANopen, mating connector 5-pin plug, A-coded	FS 3021
PROFIBUS-DP connection cable 10 m, 5-pin plug / flying lead with ferrules	FS 3024
PROFIBUS-DP connection cable 10 m, 5-pin socket / flying lead with ferrules	FS 3025
PROFIBUS-DP connection cable 2 m, 5-pin plug / flying lead with ferrules	FS 3026
PROFIBUS-DP connection cable 2 m, 5-pin socket / flying lead with ferrules	FS 3027
PROFIBUS-DP connecting cable 2 m, 5-pin socket/plug	FS 3028
CANopen terminating resistor M12	FS 3040
EtherCAT, mating connector 4-pin plug, D-coded	FS 3039
Power supply bus cover ⁽¹⁾ , mating connector M12, 4-pin. socket, A-coded	FS 3056
12-pin mating connector for SSI, straight	GG 126
12-pin mating connector for SSI, angled	GW 126
8-pin M12 mating connector for analogue interface	FS 1352

(1) e.g. EtherCAT, PROFIBUS-DP

Subject to technical modifications and typographical errors. The latest version can be downloaded at www.lenord.com.

